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Résumé. 2014 En analyse d’image, les données accessibles ne sont généralement pas de support ponc-
tuel, mais convoluées par une fonction de pondération p(x), déterminée par le processus physique
du mode de prélèvement. La déconvolution des images est traitée généralement par transformation
de Fourier. Il est bien connu que cette approche est inopérante dans le cas de données bruitées après
convolution, de données non disponibles à maille régulière et lorsque des données manquantes doi-
vent être interpolées. C’est pourquoi il est préférable de suivre une autre démarche basée sur une
procédure d’estimation des données ponctuelles par krigeage déconvoluant. Les limites pratiques de
cette méthode peuvent s’exprimer en termes de variance d’estimation (ou encore de rapport signal
sur bruit) accessible pour chaque situation expérimentale après modélisation. Elles sont illustrées
par des cas pratiques de fonction de pondérations p(x) et de variogrammes, à partir de calculs et de
simulations.

Abstcact. 2014 In image analysis, the available data do not usually have a point support, but are con-
voluted by a weighting function p(x), which is determined by the physical process of the sampling
mode. Deconvolution of images is generally treated by Fourier transform. This approach is known
to be inoperable when considering convoluted data with noise or when a regular grid of data is not
available and therefore missing data have to be interpolated. It is for this reason that it is better to use
another system based on the process of estimating point data by deconvoluting kriging. The practical
limitations of this method can be expressed in terms of variance of estimation (or of signal to noise ra-
tio), accessible for each experimental situation after modeling. They are presented by practical cases
of the weighting function p(x) and variograms 03B3(h), from calculations and simulations.
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1. Introduction.

In many circumstances, such as in image analysis (electron images, X-ray images in the micro-
probe,...), the available data are not with a point support, but are convoluted by a weighting func-
tion. This last function depends on the underlying physical process and can be established from
theoretical considerations, or can be measured with appropriate experiments. When the support
of the weighting function is larger than the imaged features, this results in blurred images, some-
times degraded by additional noise, that require some restoration before any further processing.
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After recalling the available deconvolution methods, we develop a deconvolution procedure based
on kriging, with the aim of exploring its implementation together with its efficiency and its limits
in the presence of noise. This work is illustrated by computer calculations and simulations.

2. Recapitulation of deconvolution methods.

In this part, we introduce the various approaches that enable images to be deconvoluted. All these
approaches are very common in the image analysis literature (see [1] for instance). However there
is little discussion of their efficiency and their limitations, as will be presented in the next part of
this paper using simulated images.

2.1 NOTATION. - We consider a pure signal (or an image in Rn) Y(x) which is modified through
a convolution by a weighting function p(x). In this paper p(x) is normalized, so that its integral
over spatial coordinates is equal to 1, and p(x) = p(-x). Experimentally, if N designates a noise
term uncorrelated to the signal Y, we observe the data:

or

Such a situation is common in the following experimental fields: electron microscopy [2], elec-
tron microprobe analysis [3], optical confocal microscopy [4-6].

Knowing the weighting function p, the problem is to estimate the underlying image Y(x) at
each pixel x from the data Z (xa) known at pixels xa, and the properties of the noise. This can
be done by two différent approaches, namely the implementation of a Fourier transform or an
estimation of the underlying signal by kriging. The two approaches are briefly recalled below.

Fig. 1. - Different convolution weighting functions with the same diameter 10.
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We limit our discussion to 1-D convolution functions for the sake of simplicity as explained
in the practical study presented in [4-6]. In practice the following weighting (or "convolution")
functions (see Fig. 1) are common to various physical situations:
- uniform convolution function (for instance blur caused by a lack of focus) with diameter d :

- exponential convolution function:

- Gaussian convolution function (for instance in electron microscopy):

- convolution function derived from the sinc function:

Similarly n-dimensional convolution functions can be defined (in the isotropic case we replace
lx | by the radius r).

2.2 DECONVOLUTION BY THE FOURIER TRANSFORM. - In the case of the pure convolution, it is
easy to achieve an exact deconvolution by means of the Fourier transform, from the application of
the so-called convolution theorem: if F(Y) and F(p) represent the Fourier transform respectively
of the signal Y(x) and of the convolution function p(x), we have the following result in the case
corresponding to equation (1):

F(Z) = F(Y) · F(p) (3)
From (3) it is easy to compute the unknown Y according to the following steps:
- calculation of the two Fourier transforms F(Z) and F(p) from the data Z and from the known

convolution function p
- calculation of F(Y) from equation (3)
- calculation of Y by an inverse Fourier transform

This well-known procedure is used in [7], among other examples, to improve confocal micro-
scope images.

However, it suffers serious drawbacks:
- Its implementation is limited to data on a regular grid of points (this is not a real difficulty in

image analysis), but is impracticable in the case of irregular sampling grids.
- The transform F(p) may be equal to zero for certain frequencies.
- A major limitation of the use of the Fourier transform results from the fact that the deconvolu-

tion is an unstable operator, that will tend to increase the slightest errors on the knowledge of
the data Z [1, 8]. In particular, in the presence of noise, the estimated Y is completely différent
from the underlying signal, which cannot be recovered by this method. This can be regarded
as a consequence of the fact that an image resulting from a convolution is expected to be rea-
sonably smooth, which is not consistent with the presence of noise, even at a low level.



336

2.3 DECONVOLUTION BY KRIGING. - A powerful method for filtering or interpolating missing
data, called kriging, has been developed in the frame of geostatistics [9, 10]. This procedure was
developed in the fifities to estimate unknown or noisy data, accounting for information on the
spatial structure of the underlying phenomena. The early applications of geostatistics were de-
voted to the estimation of local concentrations in orebody deposits from a set of data obtained
on probes at différent locations. The term kriging was coined in honour of Dr. D. Krige, who
initiated this method of estimation for gold deposits. As will be seen below, it involves the esti-
mation of the unknown data by a local linear régression. Recently, applications to image analysis
have been proposed: the case of multivariate images obtained from an electron microscope or
from a microprobe are presented in [2, 3]. Non linear filters have also been developed to estimate
local histograms [13, 14], using disjunctive kriging [15]. Here we consider the common case of a
single datum per pixel x, such as the recorded light intensity Z(x), deriving from an underlying
(pure) signal Y(x). The variables Y(x) and Z(x) are assumed to have the same mean and to be
realizations of an intrinsic 3D random function: the increments Z(x + h) - Z(x) are a second
order stationary random function. If the symbol E is used for the mathematical expectation, we
define the variogram of the random function Z as follows:

The variogram is estimated from the data, replacing the expectation in equation (4) by the
mean squared differences over the pairs x, x + h. Examples are given in figure 6. Tb restore
the underlying variable Y from the observed variable Z, we use as an estimator Y*(x), a linear
combination of the data in a neighbourhood of x (pixels xo) :

The weights in equation (5) are the unique solution of the linear system (6) below (commonly
referred to as the kriging system) obtained from an unbiased and a minimal variance estimator:

where yyzisa cross-variogram:

The variance of the estimate is given by 03BC + 03A303BB03B103B3YZ {x03B1 - x).
a

As seen from equation (6) the optimal filter, which is a generalization of the Wiener filtér,
depends on the structure of the data via the variograms. When using the variogram of an image,
the weights aa of equation (5) do not depend on the location of the neighbourhood. This is well-
suited to stationary data. Local variograms can be used in subimages, at the expense of a lack of
robustness. For nonstationary data, it is better to introduce nonstationary models such as intrinsic
random functions of order k, for which the weights satisfy additional conditions to equations (6)
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[16]. Such models are of constant use in applications to cartography. They can be introduced for
deconvolution as well. In the context of images, we encounter the following situations:
i) interpolation of a pure signal.
ii) filtering a noisy signal Z (with appropriate assumptions on the noise [3]): 1Y Z = 1Y estimated

from 03B3Z.
üi) deconvolution: we have

This deconvolution algorithm is an alternative to the Fourier transform method mentioned
previously, and has already been proposed in [11, 12]. In the presence of noise, 03B3Z presents a
discontinuity as iz = iY* P - I(P) + Co for h =1 0 where Co is the variance of the noise.

iv) any combination of the previous situations.
In each case we use theoretical models of variograms for 03B3Y, from which iz is calculated and

compared to the experimental 03B3Y. This is illustrated in the next part. When the variance of Y
is finite, the quality of the estimator is measured from the calculation of the signal to noise ratio
SNR = o- 2 /0,2 to be compared with the raw SNRo = 03C32Y/03C32~, where ~ = Y - Z and:

In practical situations the calculated SNR depends on the choice of the variogram model (through
the expression of the variance of estimation 03C32K).
Some comments on deconvolution by kriging may be useful here:

- the kriging procedure is itself a convolution, which may seem to be a paradox ! However, this is
expected since we are looking for an inverse of a linear operator that is invariant under trans-
lation. Furthermore, since we will get positive and negative weights for a pure deconvolution
(Fig. 4 and Thb. II), it is more correct to compare it to a differentiation. Therefore, it is expected
to favour instabilities in the presence of noise.

- It can be shown [8] that, without the last condition of equation (6), unlike the Fourier trans-
form procedure, kriging is stable against perturbations of the data Z by noise f. This operation
belongs to the class of regularization operators for the ill-posed problem of deconvolution [8].

- The connection between the two approaches can be understood in the case of a pure deconvo-
lution.
For a stationary random function Y with covariance CY(h) and known expectation, the cok-

riging system (6) can be written as follows [9, 10], if we consider a weighting measure 03BB instead of
the discrete set of weights of equation (5):

The measure A should satisfy the system (8):

for every point x in Rn. As we are considering a stationary random function Y, the measure A is
the same for each point y, so that we can restrict the system (8) to y = 0. Then:
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In (8bis), the covariances Cz and Cyz are deduced from the covariance Cy by:

By taking the Fourier transform of equation (8), we get:

and from Y * = À * Z :

which from equation (3) shows that in this case the estimator Y recovers the exact function Y.
Therefore for a pure deconvolution of a stationary random function, the two approaches (decon-
volution by Fourier transform and by kriging) are equivalent As a consequence the measure À
does not depend on the covariance Cy, which is different in the presence of noise. We will see
later that this is nearly satisfied in practical examples for discrete neighbourhoods.

Usually, as for instance for the weighting functions used in this paper, the Fourier transform
F(A) deduced from F(p) has no inverse, so that the cokriging system (6) is unstable in the absence
of noise. For a pure white noise Co (called a nugget effect) on the covariance of the data Z, we
have:

so that by Fourier transform, we can deduce from (8):

The function F(À) defined by equation (9) usually posseses an inverse Fourier transform, from
which the measure A can be recovered. Therefore, a numerically stable solution of the cokriging
system is obtained by introduction of a slight nugget effect for the pure deconvolution problem.

Other authors purpose deconvolution algorithms based on iterative constrained procedures
with a regularization [17, 18]. An interesting application to confocal microscopy images is given
in [19]. In order to make an objective comparison of the methods, the same data sets would have
to be processed, such as the simulations used in this paper, so as to estimate the improvement of
the SNR ratio.

2.4 PRACTICLIMPLEMENTATION OF DECONVOLUTION BY KRIGING. 2013 In practical applications,
deconvolution by kriging requires us to solve the cokriging system after a so-called structural anal-
ysis from which the underlying variogram yY can be identified. The direct calculation of yY from
iz and p is again a deconvolution, which is unstable according to the experimental fluctuations
of the variogram. A much better approach lies in the use of variogram models depending on
parameters. The procedure may be split into the following steps:
i) Calculation of the experimental variogram 03B3Z from the data Z. This variogram should show a

nugget effect in the presence of noise, followed by a very regular behavior for small separations
h, due to the convolution function p.
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ii) Choice of a model for the underlying variogram 1Y , with a possible decomposition into various
scales. We use theoretical models from a priori knowledge of the structure and from the
behaviour of the experimental variogram -yz.

üi) Calculation (mostly by numerical means) of a theoretical 03B3Z and from p. We must point out
that if p is unknown, the model -yY is undetermined, so that no correct deconvolution can be
expected.

iv) Comparison between the experimental and the model variogram yz. If necessary, correction
of the model (continuation of steps ü)-iü)-iv)).

v) Choice of the optimal neighbourhood based on the calculation of the SNR. Numerical calcu-
lation of the solution of the cokriging system (6). Restoration of the image from the system
of weights and calculation of the quality of the deconvolution from the SNR coefficients.

This procedure, which is implemented in a software package developed by Renard [20], is il-
lustrated and evaluated on simulations in parts 3 and 4.

3. Implementation of deconvolution by kriging.

In this part, we present the effect of the convolution on the variograms and on the expected SNR
improvement for some examples.

3.1 STRUCTURAL ANALysis. - Deconvolution by kriging and noise filtering require a prior
study of the continuity and the regularity of the target variable, known as its "structure".

The structure of the measured data variable Z may be a second order stationary random func-
tion, more regular than Y (as it is smoothed by p).

The principle is to calculate the experimental variograms (possibly in several directions). Then,
using a graphics fitting program, we try to fit both the theoretical model of the underlying variable
and the convolution weighting function to each directional experimental variogram. In practice,
this problem cannot be solved. Usually the convolution weighting function is known (as it is linked
to the experimental tool) and the only problem is to fit the structure of the underlying variable.
We illustrate the effect of the convolution on a spherical variogram:

where "a" stands for the range (or zone of influence) and C is the sill (corresponding to the fiat
part of the variogram) which should coincide with the global dispersion variance of the image.

Figure 2 shows a 1-D spherical variogram (range = 15, sill = 1) and its behaviour when con-
voluted by a uniform weighting function with diameter equal to 1, 2, 5, 10 and 15 respectively.
We note the smooth behaviour of the variogram at the origin, which corresponds to a continuous
variable obtained by convolution; the range of the convoluted variogram corresponds to the range
of the initial spherical variogram incremented by the radius of the convolution weighting function,
as expected.

In figure 3, we have represented the theoretical 2-D spherical variogram (the same as in the
previous example) altered by a 1-D convolution weighting function (along X only) with the same
diameters as previously. The variograms are represented along X and along Y. The effect of the
convolution vanishes when we move from the X to the Y direction although it does not disappear
completely.

The final problem that may arise cornes from the method used to calculate the function y* P.
Because of the large number of possible variograms and convolution functions, a formal integra-
tion is usually abandoned. Instead we dicretize the convolution weighting function and multiply
this weight by the value of the variogram for the corresponding distance.



340

Fig. 2. - 1-D Spherical variogram (Range 15; Sill 1). 1-D Uniform convolution function (Diameter d).

Fig. 3. - 2-D Spherical variogram (Range 15; Sill 1). 1-D Uniform convolution function along X (Diameter
d).

This discretization must be carried out with a large number of fine steps. Moreover, the con-
voluted variogram must remain an "authorized" variogram, which implies a careful choice of the
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discretization procédure to maintain the non-négative definiteness property of the resulting struc-
ture.

3.2 DECONVOLUTION KRIGING AND NOISE FILTERING. 2013 When the structure is determined, the

kriging process can be initiated. Then a second problem arises, which is linked to the choice of the
neighbouring information. As we work on regular 2-D isometric grid data sets, we have selected to
work on neighbourhoods centred on the target grid node, characterized by their extension counted
in grid nodes along each direction (Nx, Ny) or rather their radius (Rx, Ry) where Nx = 2 Rx + 1.
In order to simplify the algorithm, we will simply not process the target grid nodes located too
close to the edge (less than the neighbourhood radius) so that the neighbourhood of each target
node effectively processed is complète. Therefore, when the radius is chosen, the kriging weights
remain the same for all the target nodes processed and the kriging opération is reduced to a simple
scalar product between the pre-calculated weights and the values of the grid nodes neighbouring
the target node.
From the choice of a model for 03B3Z(h), we can calculate the variances 03C32Y, 03C32K and 03C32~. They are

used to estimate signal to noise ratio.

3.2.1 Study of the signal to noise ratio. The signal-to-noise improvement corresponds to the
following ratio:

The optimal neighbourhood radius R is the one for which the signal-to-noise improvement
ftattens. In other words, we look for a horizontal asymptote in the graph of I(R). This is illustrated
by the following example: working in one dimension space, and considering two basic underlying
variograms (the spherical and the cubic variograms) with the same range (15) and the same sill
(1). The cubic variogram is given by:

We have established graphs of I(R) for various amounts of nugget effect (0.01, 0.05, 0.1), for
différent convolution weighting functions (uniform, exponential and Gaussian) and for several di-
ameters of thèse functions (1, 2, 3, 5 and 10). In addition to the graphs, we also provide numerical
results for the SNRo and SNR scores, as well as the asymptotic I(R) (see the Appendix).

Several points émerge from thèse calculations:
- when R = 35, almost all the curves I(R) have reached their asymptote. The only exception

cornes from the uniform convolution function with a large diameter (d = 10) where R = 50
would be more appropriate: this is due to the fact that the uniform convolution function works
as an equally weighted moving average of the image whereas all the other convolution functions
give a larger weight to the central point than to the peripheral ones.

- the more regular the underlying variogram (for the same amount of nugget effect), the larger
the SNRo, the SNR and the improvement I(R).

- in the présence of noise, the SNR and SNRo are higher for the uniform convolution function
than for the other convolution functions: this is due to the lower degradation of the signal since
the uniform convolution function is more "local" for a given value of d (see Fig. 1).
As an example, we compare the results obtained with an underlying spherical variogram (case

1) and an underlying cubic variogram (case 2), for the same nugget effect (C = 0.1), for différent
convolution functions with the same diameter (d = 3) (see Tab. I).



342

Table 1.

3.2.2 Study of the kriging weights. All the previous calculations have been performed with
some nugget effect (from 0.01 to 0.1). In practice, the structure of the convoluted variable is usu-
ally very smooth (specially when using the uniform weighting function) and therefore the weights
of the "pure" deconvolution kriging system and sometimes even the signal to noise ratios are un-
stable. The traditional solution is to add some artificial nugget effect (which does not reflect the
nature of the underlying variable) in order to solve the pure deconvolution problem.

However (at least in theory), when no nugget effect is added, the weights do not depend on the
underlying variogram, but only on the characteristics of the convolution weighting function.

Fig. 4. - Influence of the nugget effect Co on the deconvolution kriging weights.

Figure 4 shows the effect of the nugget effect on the kriging weights. It is obtained for a fixed
neighbourhood (R = 15) with an underlying spherical variogram (Range 10; Sill 1), for an expo-
nential convolution weighting function (Diameter 3). The different values of the nugget effect are
0., 0.01, 0.02, 0.05, 0.1, 0.15 and 0.2. For an increasing nugget effect, the weights tend to be more
uniform, since the smoothing of the data required by the noise becomes more effective.
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Table II is obtained for an underlying spherical variogram (Range = 5; Sill = 1) and for an
exponential convolution weighting function (Diameter = 3). This corresponds to SNRO = 2.271.
It shows the effect of the neighbourhood radius R on the pure deconvolution kriging weights and
on the signal to noise ratio improvement: R varies from 1 to 20. Because of the symmetry, only
half of the weights are listed, the first value corresponding to the central weight.
As illustrated from the I(R) variations, the optimal radius is reached at R = 6. We also notice

that the kriging weights obtained for R = 6 will not vary significantly up to R = 20.

Table II.

4. Application.

In this part, we illustrate the theoretical results discussed previously by considering simulated
data sets for which all the structural and the convolution function characteristics are known. The
exercise is used to establish the validity of the inference method of the underlying variogram and
to evaluate the performance and the limitations of the kriging procedure for deconvoluting and
filtering noise.
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4.1 THE SIMULATED DATA SET. - For this data set, all the underlying structure and the con-
volution function characteristics are known. Although no theoretical limitation holds, we have
chosen to perform this study on 2-D images (256 x 256 pixels) both for efficiency and to simplify
the graphic presentation of the results.
Among the various possible underlying variograms, we have chosen to use the isotropic spheri-

cal variogram with a range of 15 pixels (much smaller than the dimension of the image to minimize
the problem linked to statistical fluctuations) and with a sill of 1. The reason for this choice is that
a specific simulation technique, based on the properties of the random tokens model, is known;
this is simulated a follows:

- First we create a realization of a 3-D Poisson point process (I) with a constant density 03B8. Each
point i of 1 is then considered as the centre of a sphere of constant radius R. The volume of each
sphere is attributed a random value Zi following a Gaussian distribution (0 mean and variance
(7"2). The value Z(x) finally simulated at each point of R3 is obtained by summing all the values
attributed to the spheres intersected at x. The random function thus obtained has a zero mean
and its covariance is isotropic and spherical, with a range which represents the diameter of the
spheres and its sill calculated as follows:

Finally the Poisson intensity 03B8 is directly linked to the statistical fluctuation. The larger the
Poisson intensity, the smaller this fluctuation and, unfortunately, the longer the time needed for
performing this simulation.

- A second particularity in this study is that we are looking for a 2-D simulation. It can obviously
be obtained by looking at a section of a 3-D simulation. But a more realistic method consists in
drawing the Poisson point process (I) as previously and in regarding each point as the centre of
a disk. The différence is that the radius of the disk is no longer constant, as it corresponds to the
intersection of a sphere located "at random" in R 3with a fixed plane.
The quality of the simulation can be appreciated by calculating the experimental variogram and

by comparing it to the theoretical variogram. Figure 5 shows the reference simulation and the
variograms calculated along the X and the Y directions (the angular tolerance is null) calculated
on 50 steps of one pixel and the theoretical isotropic spherical variogram.

Once this is done, the next problem is to convolve the image by the appropriate convolution
function p. Here this weighting function is derived from the sinc function as in references [4-6].
A naive solution is to discretize the function p (on a pixel basis) and to use these weights to

perform a linear combination with the initial image. Unfortunately this assumes that the dis-
cretization of p is close enough to the theoretical convolution function. Moreover, the convoluted
image is only available over the area of the initial image eroded by the diameter of the convolution
function.
A second possibility is to recall that the covariance of a random tokens model is obtained as

the convolution of the indicator function of the sphere (1 if the point belongs to the sphere S; 0
otherwise) denoted ls.

’Ib obtain the convoluted covariance Cp = C * P, it is sufficient to implant "distorted" spheres
(1s*p).
The usefulness of this construction comes from the fact that, for a given underlying spherical

variogram, we can draw the point Poisson process once and for all. The initial spherical image is
obtained by implanting spheres with a constant value (we will call it the "reference" image), the
convolutions using two 1-D squared sinc weighting functions (diameters 3 and 10) are obtained by
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Fig. 5. - Theoretical and simulated variograms along X and Y.

distorting the spheres implanted at the same points. This will enable us to compare the image after
deconvolution with the reference spherical image. Then several values of white noise (Co = 0,
0.05 and 0.2) are added to the convoluted images.

For each image, experimental variograms can be calculated and compared to the theoretical
models.

Although the spherical variogram of the initial (non-convoluted) image was isotropic, the pro-
cessed image is not isotropic, since the convolution function p only applies along the X direction.
The larger the diameter of the convolution function, the stronger the geometric anisotropy. We
can finally verify that the convolution changes the behaviour of the variogram at the origin from
a linear shape to a smooth function.

4.2 DECONVOLUTION KRIGING OF THE SIMULATED IMAGES. - The next phase consists in per-
forming the deconvolution and the noise filtering using the cokriging procedure. Again, we as-
sume here that the deconvolution weighting function and the underlying structure are known.
We must then determine the kriging neighbourhood, which will be the same for both diameters
of the convolution weighting function and for the différent values of the nugget effect. First an
optimal 1-D neighbourhood radius of 10 pixels has been selected as a good compromise: it leads
to a system with 21 kriging weights.

In the following figures (6 to 11), we first represent the reference image, followed by the image
after the convolution and the addition of noise, and finally the image obtained by kriging. The
dark edges of the last image correspond to the area where the deconvolution kriging and noise
filtering cannot be performed as the neighbourhood would not be complete: their width is the
neighbourhood radius R.
On the deconvoluted image, we can also calculate the variograms and compare them to the

reference isotropic spherical variograms. In addition to the figures, we can check the efficiency of
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the method by looking at the following resemblances:
- between the deconvoluted image and the reference image,
- between the deconvoluted variogram and the reference variogram illustrated by theoretical and

experimental variograms calculated along X and Y,
As the process has been carried out on images, we can compare the theoretical SNR to the mean

squared errors calculated between the reference image and the convoluted image (SNRO) and
between the reference image and the deconvoluted image (SNR). Thèse last two quantities will be
called the experimental SNR. The experimental and theoretical SNRO and SNR are summarized
in the table III.

Table III.

As we have already mentioned, the obvious conclusion is that the efficiency of the deconvolu-
tion decreases with the diameter of the convolution weighting function and the amount of nugget
effect. The second remark is that there is good agreement between the experimental and the
theoretical results.

If we look more carefully at the last deconvoluted image (diameter 10 and nugget effect 0.2)
obtained with the 1-D neighbourhood (Fig. 11), we notice several artefacts, which appear as short
horizontal stripes. Moreover, the same artefacts, which correspond to a residual 1-D convolution,
appear on the experimental variogram, as a remaining smoothed behaviour along X, whereas its
shape is linear along Y. The next attempt consists in performing the kriging procedure with a 2-
D neighbourhood. The radius along X is the same as in the 1-D neighbourhood (Rx = 10) and
the radius along Y is set to 1 pixel: the resulting kriging system consists of 63 kriging weights.
The signal to noise ratio is improved and, this time, the deconvoluted image does not show the
artefacts (Fig. 12 and Thb. IV).

Table IV

Tb conclude this case study, we now assume that the convolution weighting function is known
but we ignore the nature of the underlying variogram which is in practice unknown. The interac-
tive procedure performed on the convoluted variograms shows a second possible fit (although less
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Fig. 6. - Convolution diameter d = 3. Nugget Effect Co = 0. Neighbourhood radius R = 10. SNRo :
Theoretical 19.642, Expérimental 16.445. SNR: Theoretical 44.577, Experimental 31.490. I(R) : Theoretical
2.270, Experimental 1.915.



348

Fig. 7. - Convolution diameter d = 10. Nugget Effect Co = 0. Neighbourhood radius R = 10. SNRo :
Theoretical 5.213, Experimental 4.990. SNR: Theoretical 10.012, Experimental 9.344. I(R) : Theoretical
1.921, Experimental 1.873.



349

Fig. 8. - Convolution diameter d = 3. Nugget Effect Co = 0.05. Neighbourhood radius R = 10. SNRo :
Theoretical 9.917, Experimental 8.959. SNR: Theoreticat 14.173, Expérimental 12.450. I(R) : Theoretical
1.429, Experimental 1.390.
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Fig. 9. - Convolution diameter d = 10. Nugget Effect Co = 0.05. Neighbourhood radius R = 10. SNRo :
Theoretical 4.136, Experimental 3.964. SNR: Theoretical 7.074, Experimental 6.589. I(R) : Theoretical
1.710, Experimental 1.662.
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Fig. 10. - Convolution diameter d = 3. Nugget Effect Co = 0.2. Neighbourhood radius R = 10. SNRo :
Theoretical 3.987, Experimental 3.777. SNR: Theoretical 8.254, Experimental 7.611. I(R) : Theoretical
2.070, Experimental 2.015.
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Fig. 11. - Convolution diameter d = 10. Nugget Effect Co = 0.2. Neighbourhood radius R = 10. SNRo :
Theoretical 2.552, Experimental 2.476. SNR: Theoretical 5.207, Experimental 4.981. I(R) : Theoretical
2.040, Experimental 2.012.
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Fig. 12. - Deconvolution kriging with 1-D (left) and 2-D (right) neighbourhoods.

accurate than the spherical variogram with a range of 15 and a sill of 1) with an underlying cubic
variogram with a sill of 0.9 and a range of 17 (Fig. 13). The deconvolution kriging is performed
with the 1-D neighbourhood and the following results are obtained (Thb. V).

Table V.

Despite a wrong choice of the underlying variogram model, the deconvolution procedure led to
results (SNR and I(R)) very close to those corresponding to the "true" model. We must however
point out that the theoretical results are quite diffcrent, as they strongly depend on the model.

The images are strictly similar and therefore have not been presented here. And this is precisely
what the user expects from a robust deconvolution procédure ! 

4.3 APPLICATION TO A REAL CASE. - This approach was used with real data obtained on a
biological specimen with a confocal optical microscope giving three-dimensional images. In this
case there is a strong convolution in the Z direction (depth of the specimen) and the weighting
function is derived from the sinc function as used in the previous simulated data set. The results
of the deconvolution are satisfactory, and are reported in [4-6].

In our presentation and in the application mentioned, we used one-dimensional convolutions.
The same approach can be followed for three-dimensional convolutions, involving longer calcula-
tions for the convoluted variogram. However, in many practical cases, these are just an iteration
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Fig. 13. - Spherical and cubic variogram fits.

of three one-dimensional convolutions on three orthogonal directions. Lower initial SNR are ex-
pected, since there is a higher degradation of the data. The expected improvement of the SNR
can be calculated as before.

5. Conclusion.

This study of the deconvolution of data by kriging enables us to draw the following conclusions:
- efficient and easy deconvolutions can be obtained, even in the presence of noise. As a result of

the minimization of the variance of estimation, the choice of weights from the kriging system
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gives a good compromise between the operation close to a differentiation required for the
deconvolution, and the smoothing required for noise filtering. This is an effect of the adaptive
properties of kriging filters.

- from some simulations, the deconvolution seems to be robust with respect to the choice of the
model of the underlying variogram (provided that the variogram of the data is not too different
from the calculated convoluted variogram). On the other hand, the calculated SNR (and its
expected improvement) strongly depends on the model, and so must be used with some care in
the applications.
This procedure could contribute to increase the quality of various images obtained in electron

microscopy and microprobe at a high magnification.
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