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Introduction

* Ocular hyperemia is an important efficacy?, safety?, and tolerability?
endpoint in ophthalmic clinical trials.

* Validated subjective standardized scales, e.g. the validated bulbar redness
scale* and McMonnies/Chapman-Davies scale®, suffer from intra- and inter-
grader variability necessitating large study populations .

* Objective methods of assessing ocular hyperemia offer the potential to
reduce the length and/or size of clinical trials.

* A novel automated approach called Imaging System for Ocular Surface
(ISOS)® may offer a robust method to measure hyperemia grade with the
added detail of vessel morphology.

Objective

Explore the reproducibility and sensitivity of automated ocular hyperemia
efficacy readout in a double-blind interventional study in allergic conjunctivitis

Methods

* Twenty three subjects were randomly assigned to receive two slit lamp
photographs of their right temporal conjunctiva after seven days of either 0.1%
Dexamethasone (Maxidex®) ophthalmic solution or vehicle control BID in a
double blinded fashion as part of NCT02079649.

* Between slit lamp photographs, subjects were dosed with study medication
just before spending 3 hours in an environmental exposure chamber (EEC) in
which ragweed pollen was circulated at 3500 + 500 particles per m3.
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Figure 1. Study Design of Ocular Hyperemia Sub-study
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Figure 2. Steps in Data Generation and Analysis

Methods (cont.):

* Photographs were immediately scored using the validated bulbar redness
scale from 0 to 4 in 0.5 increments by one of two ophthalmologists (live
scoring) and later by three fully-blinded expert graders.

* A consensus expert score was calculated for each 25x photo to minimize
grader variability which was estimated by repeated scorings and modeling.

* 35 morphological parameters (e.g. vessel density, length and width, # triple
points, etc.) of the conjunctival vasculature were calculated using an
automatic vessel segmentation algorithm from each 25x photograph.

* Multivariate linear regression models were used to predict live and expert
consensus scores from the morphological parameters.

* The Maxidex® effect was explored via a linear mixed model of change from
Pre-EEC relative to vehicle group for hyperemia scores and image descriptors.

* Estimated N-sizes were made based on observed mean change and standard
deviation within the Maxidex® treatment group using a paired T-test model.
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Figure 3. Slit Iam,l?l photographs and hyperemia assessments
in an example vehicle treated subject

* 13 subjects were randomized to Maxidex® and 10 to vehicle control.

* Intrinsic variability of automated score was similar to consensus expert score
and better than that of live and individual expert scorings (Figure 4).

* Live hyperemia score was best predicted by vessel density alone (r=0.68)
while consensus expert score was best fit by a linear model (r=0.93) of 14
morphological descriptors (e.g. vessel density, vessel length, # triple points).

r=0.68, p=2.2e-12
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Figure 4. Intrinsic variability of hyperemia scores and best-fit
morphological predictions of live and expert consensus scores

Results (cont.):
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Figure 5. Changes from Pre-EEC in h\c/’peremia scores and
vessel morphology for Maxidex® and vehicle treated groups

* A significant Maxidex® response (p<0.05) relative to vehicle was observed in
consensus expert and automated scores with further characterization of the
response offered by vessel density, vessel length, and # triple points (Figure 5).

* Improved reliability of automated hyperemia readouts offer the potential for
reduced study sizes (Table 1).

Measure Maxidex® Effect N estimate
(Post-Pre EEC) (p<0.05, 80%)

Live Score -0.077+0.45 270
Expert Cons. Score 25x -0.44+0.65 19
Automatic Score -0.4010.56 18
Vessel density -4.3246.35 19
Triple Pts -351+477 17
Vessel Length -10048+12341 14

Table 1. N-size estimates based on Maxidex® effect between
Post- and Pre-EEC evaluations

Conclusions

* |ISOS-based hyperemia assessment offers a deeper understanding of the
hyperemia response with a high degree of reliability.

* Its application in additional indications and further implementation
enhancements could dramatically improve the efficiency for future clinical trials.
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