
Introduction

Problematic

Geographic atrophy (GA) is one of the

advanced forms of Age-related Macular

Degeneration (AMD) and is characterized

by the progressive atrophy of the retinal

pigmented epithelium and photoreceptors

leading to loss of vision. Progression of

GA is currently manually assessed by

lesion size growth rate by Fundus

Autofluorescence (FAF) imaging and is

highly variable between patients (Fig 1).

The aim of this study was to predict the

lesion growth rate at month 12 from

baseline images using a Deep Learning

approach through Convolutional Neural

Network (CNNs).
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Material and Methods

Datasets

Data were pooled from several GA

studies conducted by Novartis/Alcon

(GATE, GAP, PJMR0092103,

CLFG316A2003) representing about

236,822 total images over a period of 1-4

years. Infrared Reflectance (IR) and

Fundus Autofluorescence (FAF) images

with corresponding lesion size

measurements and with a follow-up at 6,

12 or 18 months were selected. 2,708

eyes with IR and 2,204 eyes with FAF

follow-up were then split as follows: 80%

for CNN training, 10% for the fusion

training and 10% for testing. Both eyes

from same patient were kept in the same

set.

Approach

After image pre-processing (trimming,

resizing), several pre-trained CNNs,

namely VGG-16/192, Inception-v43,

NASNet4 and ResNet-101/1525 were fine-

tuned on the IR or FAF datasets.

Performance of the CNNs were then

evaluated using Pearson’s correlation

coefficient. We then conducted a late

fusion training, which consisted of a

Multilayer Perceptron based on features

from the prediction of 4 CNNs using FAF,

the prediction of 1 CNN using IR as well

as the age variable (Fig 2).

The late fusion thus yielded an Area

Under the Curve (AUC) of 0.8174 (Fig
3A) and with an accuracy of 76.7% and a

positive/negative predictive rate of 65.9%

and 84.9%, respectively (Fig 3B).

Conclusions

We showed here for the first time that

baseline retinal images indeed contain

predictive information about the GA lesion

growth rate at follow-up visits. The high

negative predictive value indicate the

possibility of screening out slow

progressors while modest positive

predictive value suggest that additional

parameters may be needed to improve the

prediction of fast progressors. Furthermore,

the visualization features enabled the

validation of the algorithm and provided

new insights into the natural GA

progression.
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Activation heatmaps

One of the challenges for CNNs’ adoption

is to understand and validate the learning

process, which leads to the prediction

(‘black boxes’). We thus implemented a

modified sensitivity analysis approach,

which was previously used for diagnosis

of referable diabetic retinopathy6, in order

to visualize the regions, at the pixel-level,

which play a role in the prediction of GA

growth.

Results

Performance of prediction

The late fusion approach, which took the

best CNN results in input, yielded an

overall Pearson correlation coefficient of

0.59 (Fig 3A).

The test dataset was then separated into

slow and fast progressors based on the

average growth rate for all the pooled

trials (0.13mm2/month) to work on a

binary classification problem.
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Figure 1 A. Variability of lesion size growth rate between 
patients B. Example of slow and fast growth in 12 
months
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Figure 2 Workflow of the late fusion approach
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Figure 3 A. Correlation plots of ground truth and predicted 
growth rate with 0.13mm2/month threshold and AUC B. 
Confusion matrix

Visualization of the data

The activation maps showed that the

prediction is mainly based on the lesion

itself (Fig 4A). Evaluation of the t-

distributed stochastic neighbor

embedding (t-SNE) map on the training

set suggests that the shape complexity

positively may be the most important risk

factor for growth rate (Fig 4B).

Figure 4 A. Examples of activation maps. B. t-SNE map 
with representative images from slow to fast 
progression


