

PSL

# **A NEW COLOR AUGMENTATION METHOD** FOR DEEP LEARNING SEGMENTATION OF **HISTOLOGICAL IMAGES**



#### Research & Innovation

Yang Xiao<sup>1</sup>, Etienne Decencière<sup>1</sup>, Santiago Velasco-Forero<sup>1</sup>, Hélène Burdin<sup>2</sup> Thomas Bornschlögl<sup>3</sup>, Françoise Bernerd<sup>3</sup>, Emilie Warrick<sup>3</sup> and Thérèse Baldeweck<sup>3</sup>

<sup>1</sup> MINES ParisTech, PSL Research University, Centre for Mathematical Morphology, Fontainebleau, France <sup>2</sup>ADCIS SA, 3 rue Martin Luther King, 14280 Saint-Contest, France <sup>3</sup> L'Oréal Research and Innovation, Aulnay-sous-Bois, France



# INTRODUCTION

#### Challenges in histological image segmentation

• With the recent advent of digital whole slide imaging, the number and the size of acquired images are growing up and there is a need of finding ways to also adapt the throughput of image quantification.

- Deep neural networks usually require large training sets to achieve an acceptable performance, while the generation of the segmentation ground-truth is very time-consuming.

| Data  |           | Data base n°2      |           |                     |  |
|-------|-----------|--------------------|-----------|---------------------|--|
| base  | Training  | Validation         | Test      | Generalization Test |  |
| N=    | 26 images | 9 images           | 41 images | 52 images           |  |
| Study |           | Clinical study n°3 |           |                     |  |
|       | 200 μm    | 200 µm             | 200 µm    | 200 µm              |  |

MATERIALS

- Given complex tissue structures and inconsistencies in sample preparation, **network generalization** is crucial.
- We show that a deep neural network can learn a satisfactory segmentation model with relatively few data thanks to a convenient image augmentation method.





## METHODS

#### TRAINING



#### **TESTING / PREDICTION**

#### **COLOR AUGMENTATION IN Lab COLOR SPACE**

At training time, before feeding a crop (the *original* crop) into the network, another one (the *target* crop) is chosen and each channel

$$C_{\text{transferred}} = C_{\text{original}} - \overline{C}_{\text{original}} + \overline{C}_{\text{target}}$$

This transformation is only applied to the pixels considered as belonging to the

### RESULTS

| Ī | rain: | the | more | augr | nenta | tion |
|---|-------|-----|------|------|-------|------|
|---|-------|-----|------|------|-------|------|

| the less overfitting |                    |                  |  |  |  |
|----------------------|--------------------|------------------|--|--|--|
| Method               | Best<br>train loss | Best<br>val loss |  |  |  |
| No augm              | 0.0060             | 0.0307           |  |  |  |
| Geom                 | 0.0133             | 0.0243           |  |  |  |
|                      |                    |                  |  |  |  |

0.0114

0.0178

Color

Mixed

0.0272

0.0211

| ١, | <u>Results on Database n°1: "Test"</u>               |                           |      |      |                            |       |     |  |
|----|------------------------------------------------------|---------------------------|------|------|----------------------------|-------|-----|--|
|    | Color and mixed augmentation clearly enhance results |                           |      |      |                            |       |     |  |
|    | Method                                               | Jaccard index (per class) |      |      | Mean dist. GT / prediction |       |     |  |
|    |                                                      | BG                        | SC   | LE   | Surf.                      | IEB   | DEJ |  |
|    | No augm                                              | 0.97                      | 0.77 | 0.87 | 54.6                       | 311.5 | 7.9 |  |
|    | Geom                                                 | 0.99                      | 0.82 | 0.89 | 16.3                       | 30.9  | 5.1 |  |
|    | Color                                                | 0.99                      | 0.89 | 0.91 | 2.1                        | 9.7   | 4.3 |  |
|    | Mixed                                                | 0.99                      | 0.89 | 0.92 | 2.0                        | 9.7   | 3.6 |  |

Results on Database n°2: "Generalization test" Thanks to color and mixed augmentation the model performance is the same

| Method | Jaccard index (per class) |    |     | Mean dist. GT / prediction |  |  |
|--------|---------------------------|----|-----|----------------------------|--|--|
|        |                           | 00 | 1.5 | Ourf                       |  |  |



#### **CONCLUSIONS & PERSPECTIVES**

- A new image augmentation method has been proposed
- We have shown that it helps improving the generalization capacity of a fully convolutional neural network trained to segment histological images
- It has been integrated in an industrial software

#### **Perspectives:**

Generative adversarial networks might help improving the augmentation method



Data augmentation considering elastic deformation could be combined with proposed color augmentation the method to increase the variety

## REFERENCES

[1] E. Decencière et al., "Dealing with topological information within a fully convolutional neural network," in ACIVS, 2018.

[2] Y. Yuan et al. "Automatic skin lesion segmentation using deep fully convolutional networks with Jaccard distance," IEEE TMI, vol. 36, pp. 1876–1886, 2017.