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INTRODUCTION MATERIALS

Challenges in histological image segmentation
* With the recent advent of digital whole slide imaging, the number

Data base n°1 Data base n°2

and the size of acquired images are growing up and there is a 1raining validation _ Seugidlizaionlios:
need of finding ways to also adapt the throughput of image N= 26 images 9 images ‘ 41 images 52 images
quantification. Study Clinical studies n°1 & 2 Clinical study n°3
*Deep neural networks usually require large training sets to

achieve an acceptable performance, while the generation of the
segmentation ground-truth is very time-consuming.

* Given complex tissue structures and inconsistencies in sample
preparation, network generalization is crucial.

 We show that a deep neural network can learn a satisfactory
segmentation model with relatively few data thanks to a
convenient image augmentation method.
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METHODS
TRAINING TESTING / PREDICTION COLOR AUGMENTATION IN Lab COLOR SPACE
Topological pre-processing [1] Topological pre-processing [1] At training time, before feeding a crop (the original crop) into the
) network, another one (the farget crop) is chosen and each channel
Conversion to Lab color space Conversion to Lab color space of the original one is transformed:
512x512 crops extraction Ctransferred — Coriginal — Coriginal + Ctarget
: .. This transformation is only applied to the pixels considered as belonging to the
Fully convolutional network tra_lnlng (U-Net) biological sample (threshold 0.86L, ., applied to the L channel)
* Color augmentation
« Geometric augmentation U-Net application to Examples P - 3 %
* Jaccard loss [2] complete histological image P .19 it ¢
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Transformation of 3-channel output Transformation of 3-channel output s ;ﬂaﬁw%v*@&
into labelled image into labelled image SR e . Ay
original
Post-processing: removal of Post-processing: removal of
spurious components [1] spurious components [1] target 2 transferred 2

RESULTS CONCLUSIONS & PERSPECTIVES
Train: the more augmentation, Results on Database n°1: "Test” I R e 1 G e e NI N . tati thod
the less overfitting Color and mixed augmentation clearly enhance results e e e WA e new image augmeniation metho
Method Best Best | m Mean dist. GT / prediction it =" LR NN ol Al N has been proposed
etho : A Sy g Sy % : : :
train loss | val loss . Ny 4t n | e * We have shown that it helps improving

No augm

No augm | 0.97 0.87 :
Geom 0.0133 0.0243 Geom 0.99 0.82 0.89 16.3 30.9 5.1

the generalization capacity of a fully
convolutional neural network trained
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O It has been integrated in an industrial
Results on Database n°2: “Generalization test” % software
Thanks to color and mixed augmentation the model performance is the same P! : _
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